

Hardware Sizing a Tabular Solution (SQL
Server Analysis Services)

SQL Server Technical Article

Authors: John Sirmon, Heidi Steen

Contributors and Technical Reviewers:Karen Aleksanyan, Greg Galloway, Darren Gosbell, Karan

Gulati, Chris Kurt, TeoLachev, Greg Low, Akshai Mirchandani, BoyanPenev, Shep Sheppard, Chris Testa-

O’Neill

Published:January 2013

Applies to: SQL Server 2012 Analysis Services, Tabular Solutions

Summary:Provides guidance for estimating the hardware requirements needed to support processing

and query workloads for an Analysis Services tabular solution.

2

Copyright

This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet Web site references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association

or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2013 Microsoft. All rights reserved.

3

Contents
Introduction .. 4

Hardware Considerations for a Development Environment .. 5

Memory ... 7

Calculate Memory for Databases at Rest.. 8

Memory Requirements for Disaster Recovery ... 9

Memory Requirements for Program Execution .. 10

Estimating Memory for Processing ... 10

Use a formula to get an initial estimate.. 11

Measure memory used by individual objects ... 12

Refine the estimate by building a prototype that yields a better value for data compression 13

Calculate actual compression rate .. 14

Estimating Memory for Querying ... 14

About Concurrency Testing ... 15

Monitor memory usage during processing and querying ... 15

Key Points .. 17

Memory Bandwidth and Speed .. 18

Key Points .. 19

CPU .. 19

Cores ... 20

Other considerations .. 20

Onboard Cache (L1, L2) ... 21

NUMA .. 22

Monitor CPU Usage ... 23

CPU usage during query execution ... 24

Key Points .. 25

Disk I/O .. 25

Hardware Configuration Examples ... 26

Conclusion ... 27

4

Introduction
This document provides hardware sizing guidance for in-memory Analysis Services tabular databases so

that you can determine the amount of memory and CPU resources required for query and processing

workloads in a production environment.

NOTE: This guide is focused exclusively on in-memory tabular solutions. DirectQuery models, which

execute queries against a backend relational database, have different resource requirements and are

out of scope for this guide.

For in-memory solutions, the best query performance is typically realized on hardware that maximizes

the following:

 Amount, bandwidth, and speed of memory

 Fast CPUs

 Onboard cache size

Notice that disk I/O is not a primary factor in sizing hardware for a tabular solution, as the model is

optimized for in-memory storage and data access. When evaluating hardware for a tabular solution,

your dollars are better spent on the memory subsystem rather than high performance disks.

When sizing hardware for an in-memory database, your focus should be on three operational objectives:

 Estimate the basic storage requirements for an in-memory tabular database (under zero load).

 Estimate memory required for processing, where Analysis Services reads, encodes and loads

data into model objects. Processing introduces a temporary, yet significant, load on the memory

subsystemfor the duration of the processing operation. You can offset this by designing a

processing strategy that includes remote or incremental processing.

 Estimate CPU and memory required for queries issued from client applications, such as Excel

pivot reports, Power View reports, or Reporting Services reports. Queries are primarily CPU

intensive, but can cause temporary surges in memory usage if a calculation requires data to be

decompressed.

To help you evaluate the resources needed to support each objective, we start each section with brief

description of how a resource is used, provide estimation techniques you can apply to your own

solution, and conclude with key takeaways that summarize important points.

This guide also includes a summary of existing hardware configurations to give you an idea of the range

of hardware currently supporting production workloads. Sometimes knowing what works for other

people is the most valuable information you can have.

http://msdn.microsoft.com/en-us/library/hh230898.aspx

5

In this guide, server provisioning targets a single system that runs all

workloads, using the memory and CPU resources that are local to that system.

Scale-out topologies are out of scope for this guide. If you already know that

projected database size would require an unreasonable amount of RAM

relative to your budget, consider designing a solution that has smaller parts

rather than one solution with a very large footprint. Alternatively, consider

building a multidimensional solution. Multidimensional models are optimized

for disk storage and data access, and can more easily accommodate huge

datasets that measure in multiple terabytes.

Hardware Considerations for a Development Environment

Your first interaction with a tabular solution and the hardware it runs on will be with the computer used

to develop your project. Before diving into the requirements of a production server, let’s take a moment

to understand how system resources are used during initial development.

RAM used during processing

Compared to a business class production server, there is usually less RAM available on a development

server. Working within the constraints of available RAM means that you’ll most likely start your project

with a subset of your data that is faster to import and easier to manage.

One of the more compelling reasons for working with a smaller dataset is that it preserves your ability to

fully process your Analysis Services solution at any time. Process Full is elegant in its simplicity; it clears

and reloads all of the objects in your solution, including calculated columns and relationships. It is also

the most memory-intensive of all the processing options.

Running a Process Full on your solution will require 2 to 3 times more RAM than that required to store

the database at steady state. The additional RAM is used to store a shadow copy of the database. After a

database has been processed the first time, subsequent processing includes holding a second copy of

the database in-memory to service incoming queries while Process Full is executing in the background.

The shadow copy is released as soon as the final transaction is committed.

Later, when you are closer to deployment, you might want to design a processing strategy that includes

incremental processing, remote processing, or batch processing. Using these techniques allows you to

prioritize and redistribute the workload, resulting in more efficient resource utilization than what

Process Full can provide.

6

Checking memory used for tabular database storage

Tabular databases are stored in memory. As you work with the model, you’ll want to check on the

memory used by your database size on a regular basis. For tabular solutions, database size is measured

by the amount of memory used to store the database at steady state. The easiest way to determine

database size is by checking database properties in SQL Server Management Studio (SSMS).

If your tabular model is already built and deployed to a development server, you can determine memory

usage for at-rest databases by reading the Estimated Size database property in SQL Server Management

Studio, and then multiply that number by 2 or 3 to get a rough estimate of total memory needed for

testing both processing and query workloads.

The advantage of using SQL Server Management Studio to estimate database size is that the database is

loaded into memory when you access its properties. Using other approaches, for example using

Performance Monitor to get memory usage for the msmdsrv process at startup, might initially under-

report memory usage because you’ll get only the memory used by Analysis Services plus the metadata

of any databases that it’s hosting. Actual data won’t be read into memory until the first query is issued

to the database.

NOTE: Although reading estimated size from SSMS is the easiest approach, it’s not the most accurate

approach because the value is estimated at a specific point in time, and then retained for the duration of

the connection. Later, we’ll present alternative approaches that provide more accuracy.

7

About the Workspace Database

When creating a tabular model in SQL Server Data Tools, a workspace database takes up memory on

your development machine. As you monitor system resource usage on your development machine,

remember that artifacts of the development phase, like the workspace database, are not part of

production environments.

For this reason, when using Performance Monitor or other tools that report memory usage at the

instance level, remember to unload the workspace database so that you get a more accurate

assessment of memory usage.

To unload the database, simply close the project in SQL Server Data Tools (SSDT). The workspace

database is immediately removed from the server instance you are using for development purposes.

NOTE: A workspace database will not unload if you set the Workspace retention option to Keep in

memory. If this is the case, right-click the database and choose Detach to unload the database.

Finally, consider the effects of having multiple workspace databases on a single development server. If

multiple developers are using the same workspace database server then you might have multiple copies

of the database in memory and on disk.

1. In SSDT, go to Tools | Options | Analysis Services.

2. If "Keep workspace in memory" is set for multiple development machines then these workspaces

will collectively consume memory on the database server. Using "Keep workspace databases on

disk but unload from memory" is the better choice if multiple developers share the same server.

Memory

All in-memory database technologies require large amounts of RAM, so it comes as no surprise that

maximizing RAM should be your top priority. Whether you plan to run multiple small to medium size

solutions, or just one very large solution, begin your hardware search by looking at systems that offer

the most RAM you can afford.

Because query performance is best when the tabular solution fits in memory, RAM must be sufficient to

store the entire database. Depending on how you plan to manage and use the database, additional

memory up to two or three times the size of your database might be needed for processing, disaster

recovery,and for queries against very large datasets that require temporary tables to perform the

calculation.

8

To get the most utilization from business class servers that have more memory than can be immediately

used, some customers are using virtual machines and multi-tenant designs to host multiple servers and

solutions on a high end server. Using a VM lets you adjust memory incrementally in response to

changes in demand, and provides a mechanism for rolling back to previous snapshots if a server goes

down. If your hardware has excess capacity at the outset, setting up multiple VMs lets you redistribute

extra computing power across multiple logical servers. As the capacity requirements for one VM grows,

you can adjust its configuration accordingly, and retire or move other VMs to different machines.

The following illustration provides a visual overview of all the data points you need to collect when

estimating memory. It indicates 1-to-n databases, a shadow copy of a database being processed in the

background, the formula engine, and msmdsrv process. By default, Analysis Services pre-allocates 60%

of all RAM, and tops out at 80%. These thresholds are configurable at the instance level.

As you can see, there are variable and fixed components to a tabular instance deployment. If you never

load a single data base, you will still need memory for the Formula Engine and msmdsrv process. Each

database will place additional demands on the system in the form of data dictionaries, column

segments, and query caches (not shared across databases).

Maximum database size

There are no theoretical limits on the physical size of the database, except

those imposed by the system, which must be able to store all data dictionaries,

column segments (this is the storage unit for tabular databases), caches, and

the formula enginein memory. The system will page uncompressed data to

disk during processing, but you should not count on it for normal server

operations.

Calculate Memory for Databases at Rest
As a first step, you will need to calculate the amount of RAM you will need to simply store the database,

irrespective of the processing and query operations that will come later.

9

For databases that are already built, you can calculate database size in memory using any of the

following techniques:

 Run a DMV query that reports on database size

 Read the database file size on disk

 View estimated database size in Management Studio (as mentioned in the previous section)

For projects at a more preliminary stage, including projects with data sizes that exceed the capacity of

development machines, you will need to base your estimate on the uncompressed dataset that you are

modeling, or build a prototype that uses a subset of your data.

Many customers routinely use PowerPivot for Excel as a tool for testing how much compression they’ll

get for their raw data. Although PowerPivot uses a slightly different compression algorithm, the

compression engine is the same, allowing you to arrive at reasonable estimate when prototyping with

the PowerPivot add-in. PowerPivot add-in is available in 32-bit and 64-bit versions. The 64-bit version

supports much bigger models. Try to use that version if you can.

Other customers who work with large datasets usually apply filters during import to select a subset of

data (for example, filtering on one day’s worth of transactions). This approach gives you a smaller and

more manageable dataset, while retaining the ability to extrapolate a realistic estimate of the final

dataset (all things being equal, if one day’s dataset is 20 MB, a month is roughly 600 MB).When choosing

a filter, however, it is important to make sure that the subset of the data is still representative of the

overall data. For example, it might make more sense to filter by date than by city or state.

If you are contending with tabular model deployment on a system that has little RAM to spare, you can

optimize your model to reduce its memory footprint. Common techniques include omitting high

cardinality columns that are not necessary in the model. Another tradeoff that a solution architect will

consider is using a measure in lieu of a calculated column. A calculated column is evaluated during

processing and persisted to memory. As a result, it performs well during query execution. Contrast that

with a measure that provides equivalent data, but is generated during query execution and exists only

until evicted from cache. The query runs slower due to extra computations, but the benefit is a

reduction in persistent storage used on an ongoing basis.

Memory Requirements for Disaster Recovery
When estimating memory usage, remember to budget for database restore to allow for situations

where the database becomes corrupted or unusable. Having insufficient memory to perform this

operation will limit your recovery options considerably, perhaps requiring you to detach other databases

that you’d rather keep online. Ideally, you should have enough RAM to restore and test a backup before

removing the one that is being replaced.If the backup is corrupt, unusable, or too stale, you might want

to salvage what you can from the original database before deleting it completely.

Having enough memory for restore equates to about 2x the size of the database, about the same

amount you would need for full processing. Estimating hardware resources for disaster recovery does

http://office.microsoft.com/en-us/excel-help/data-model-specification-and-limits-HA102837464.aspx
http://msdn.microsoft.com/en-us/library/cc280583.aspx

10

not mean you need an additional 2x RAM on top of that already budgeted for processing; it just gives

you one more reason to have RAM that is 2-3x size of your solution.

An alternative approach that others have found effective is to use VMs. You can quickly reload a

previous virtual machine snapshot to restore data access to a tabular solution.

Memory Requirements for Program Execution
Analysis Services reserves approximately 150 megabytes (MB) of memory for program execution,

Formula Engine, Storage Engine, shared objects, and shared cache. An Analysis Services instance that

has no databases will use 150 MB of RAM on the host computer.

In addition, data dictionaries are always locked in memory, never paged to disk (only segment data can

be paged to disk, and then only when the system is under memory pressure). The data dictionaries of all

databases running on a tabular mode server will load into memory on service start up.

Estimating Memory for Processing
Processing, which includes reading, encoding, and loading compressed data into tabular model objects,

is the first resource-intensive workload you’ll need to consider. Processing is a memory-intensive

operation, requiring at least two times the amount of memory required to store the database when it’s

finally processed and deployed. Processing uses memory for storing both compressed and

uncompressed data while it’s being read and encoded.

For exceptionally large databases, you can offload processing to another machine, and then synchronize

the fully processed database to a production server. If you refer back to the server map illustration, this

approach saves you the memory required for hosting the current database (used for servicing queries)

while the new database is built in the background. Although this approach to processing can lower your

resource requirements considerably, for the purposes of this guide, we’ll assume you are processing the

database on the production server.

The most common approach for estimating memory usage for processing is based on a factor of

database size at zero load. Memory requirements will vary depending on how well data is

compressed.Notably, compression is greater for columns that store repeating values, whereas columns

containing distinct values do not compress well.

The technique we recommend for getting preliminary estimates is to use a simple formula for

calculating compression and processing requirements. In spite of its limitations, using a formula to is a

reasonable place to start if you require a ballpark figure. To improve upon your estimate, you can

prototype the model you plan to deploy using a representative sample of the larger dataset:

 Use a formula to get an initial estimate.

 Build a prototype to refine the estimate.

http://msdn.microsoft.com/en-us/library/ms174928(v=sql.110).aspx

11

Alternatively, import a subset of rows from each table and then multiply to get an estimated size.

Use a formula to get an initial estimate

The following formula provides an initial estimate of the memory you’ll need to process and store all of

your data in local memory.

 ([Size of uncompressed data] /10) * 2

Uncompressed data is the size of the database file, assuming you’re importing all or most of the

database into a tabular solution.

For a SQL Server database, you can run sp_spaceused to return size information for each table. The

following screenshot provides an illustration using the FactOnlineSales table, which measures around

362 megabytes.

Alternatively, to get overall database size, omit the table name and execute sp_spaceused as follows:

Composition of the formula

Dividing uncompressed data by ten gives you an estimate of model size after the data is compressed.

This is how much memory the model will consume once it is deployed to the server.

The denominator (10) was arrived at by averaging the actual compression rates over a wide range of

data sets. For your solution, actual compression might be much lower (2 or 3) or much higher (100x),

depending on data type, length, and cardinality. Tables or columns containing mostly unique data

values (such as fact tables) will experience minimal compression, while other tables might compress by a

Use ContosoRetailDW;

Go

Exec sp_spaceused;

Go

http://msdn.microsoft.com/en-us/library/ms188776.aspx

12

lot. For estimation purposes, ten is often cited as an acceptable, middle of the road estimate of overall

compression for a database that includes a balance of unique and non-unique values.

The second part of the formula asks you to double the amount of memory used by the database.

Doubling memory accounts for processing operations, as the server keeps a second copy of the

database in memory to service query requests while processing runs in the background.

Memory used to store the database copy is immediately released after processing concludes, but that

doesn’t mean memory usage diminishes to just the RAM needed to store the database. Queries and

Storage Engine caches also consume memory. On the server, a query devolves into table scans that

select and aggregate data, calculations, and other operations.

As you investigate memory usage by tabular solutions, you might come across

other formulas that are more robust mathematically, yet harder to use if you

are not deeply familiar with the data. In the end, you might find it more

productive to use a simplistic formula for an initial estimate, and then move on

to prototype a solution usinga subset of your own data.

Measure memory used by individual objects

Analysis Services provides Dynamic Management Views (DMVS) that show metadata and system

information, particularly memory usage, for model objects.

While not strictly a hardware sizing exercise, knowing which objects take up the most memory gives you

the opportunity to identify and possibly remove any resource-intensive objects you don’t actually need.

1. Open an MDX query window in SQL Server Management Studio, connecting to the tabular

instance running your database.

2. Enter the following DMV command, Select * from $System.discover_object_memory_usage,

and click Execute. You can order by nonshrinkable memory to see which columns (in this case,

the SalesKey in the FactSalesTable) are using the most memory.

While running a DMV is acceptable, we recommend that you download and use a workbook created and

published by Kasper De Jonge, an Analysis Services program manager. His workbook uses DMV queries

http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance

13

to report memory usage by object, but improves upon the raw DMV by organizing and presenting the

results in a hierarchy that lets you drill down into the details.

Best of all, the workbook reports on database size.

Refine the estimate by building a prototype that yields a better value for data compression

As we work our way up the continuum of estimation techniques, we arrive at one of the more robust

approaches: prototyping using your own data.

 The best way to determine how well your data compresses in a tabular solution is to start with some

initial data imports. Because the objective is to understand compression behavior, treat this as a

prototyping exercise. If you were building a model you planned to keep, you would spend time thinking

about model design. For our purposes, you can set those problems aside and focus simply on choosing

which tables and columns to import for the purpose of estimating database size.

The following steps approach prototyping from the standpoint of large datasets. If your dataset is not

large, you can just run Process Full. Otherwise, process just one table at time, and then run Process

Recalc at the end to process table dependencies.

1. Create a new tabular project using SQL Server Data Tools.

2. Import the largest table from your external data source into a tabular model. If it’s a fact table,

exclude any columns that are not needed in the model. Usually, the primary key of a fact table is

a good candidate for exclusion, as are columns that are only required for ETL processing.

3. Process the table and deploy it to a development server.

4. If deployment succeeds, measure the size of the compressed table in memory. If deployment

fails, apply a filter to get a smaller rowset, while ensuring that the filtered rowset is still

representative of the overall table.

14

5. Import and process a second table, deploy the solution, measure memory usage, and then

repeat with additional tables.

6. Stop when you have sufficient dataset representation in your model.

7. As a final processing step, run Process Recalc to process relationships.

8. Measure the memory used by the database by viewing database properties in SQL Server

Management Studio, or by using DMVs if you want to drill into the details. At this point, you

now have a solid foundation for projecting how much memory you’ll need for the rest of the

data.

Calculate actual compression rate

Once you’ve processed and deployed a solution, you have compressed database files on disk that you

can use to calculate a more realistic compression rate. Comparing the file size of compressed data

against uncompressed data gives you the actual compression rate for your solution.

After you get an actual compression rate, you can replace the denominator (10) in the ‘simple formula’

with a more realistic value.

1. Get the file size of the original uncompressed data.

2. Find the \Program Files\Microsoft SQL Server\MSAS11.<instance>\OLAP\DATA\<db folder>, and

note the file size.

3. Divide the result from step 1 by the result in step 2 to get the compression ratio.

4. Re-compute the simple formula, replacing 10 with your actual compression rate, to get

estimated memory requirements for processing.

NOTE: While this approach is generally reliable, in-memory databases tend to be somewhat larger than

database files on disk. In particular, having highly unique columns will cause memory usage to exceed

the size of data in the data folder. As a redundant measure, use alternative methods such as the DMV,

database property page in Management Studio, or Performance Monitor to further check database size.

Estimating Memory for Querying
Memory requirements for query workloads are by far the most difficult to estimate. Unless your

solution includes a report or client application that uses predefined or predictable queries, it is difficult

to make a precise calculation. You will need to perform ad hoc testing and load testing, and monitor

resource usage while querying from client applications. Power View, Reporting Services reports, and

Excel all use memory differently. Furthermore, DAX query construction can adversely affect resource

usage. Certain DAX functions (such as EARLIEST, SUMX, and FILTER) are known to cause a temporary yet

significant increase in memory usage as temporary tables are created and iterated over to determine

which rows to return.

DAX query optimization is beyond the scope of this guide, but other sources are available that cover this

material. See the links at the end of this document for more information.

http://msdn.microsoft.com/en-us/library/ee634551.aspx
http://msdn.microsoft.com/en-us/library/ee634959.aspx
http://msdn.microsoft.com/en-us/library/ee634966.aspx

15

About Concurrency Testing
When you have a large number of users requesting data from a model, memory usage will climb

accordingly, but the amount required will vary depending on the query itself. If you have 100 users

accessing a report that issues an identical query each time, the query results are likely to be cached and

the incremental memory usage will be limited to just that result set. Of course, if each user applies a

filter to that query, it’s the equivalent of having 100 unique queries, a vast difference in memory

consumption.

To truly understand the impact of a large number of requests, you will need to load test your solution.

Visual Studio includes a load testing module that lets you simulate multiple user requests at varying

intervals for different client applications. The configuration of load tests using this facility is beyond the

scope of this guide, but worth mentioning due to its relevance to hardware provisioning. Serious load

testing requires a professional toolset. It’s not simple to do, but Visual Studio offers one of the better

approaches for testing a server under load. For more information, see Working with Load Test (Visual

Studio Team Edition), Can your BI solution scale?, and Load Testing Analysis Services.

Monitor memory usage during processing and querying
Performance Monitor is an oft-used tool for understanding memory usage and trends at the operating

system level. You’ll use it regularly to understand memory allocation and release patterns for your

tabular solutions.

The following steps will get you started with monitoring RAM usage in Performance Monitor:

1. Isolate a database at the instance level by detaching other databases so that an instance is

running only the database we want to look at. You can detach databases using Management

Studio.

2. In Performance Monitor, select the tabular instance (on the system shown in the screenshot, a

tabular server is installed as named instance, as localhost\tabular).

http://msdn.microsoft.com/en-us/library/ms182561(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ms182561(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/ms182561(v=vs.90).aspx
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI330
http://sqlbits.com/Sessions/Event10/Load_Testing_Analysis_Services

16

3. Expand MSOLAP$TABULAR:MEMORY and select Memory Usage KB, VertiPaq Nonpaged KB,

and VertiPaq Paged KB.

4. Execute a Process Full against the database in Management Studio to understand how memory

is used.

The following screen capture shows a typical pattern of increasing memory consumption (the

counter shown is for Memory Usage KB), leveling out at maximum allowed (80% RAM by default),

with memory released as processing concludes.

17

Next, issue queries against the database to understand the query profile of your client application.

If the query can be executed against the compressed data, you won’t see a noticeable difference in

memory usage on the server. Otherwise, you’ll see a transient surge in memory usage as temporary

tables are created to store and scan uncompressed data.

Although memory spikes during query execution are sporadic, the same cannot be said for client

applications. Client applications will most certainly consume memory as data is retrieved from the

tabular model. As part of your investigation, consider adding client processes to the trace to monitor

memory usage.

1. On the client computer, start the client applications used to query the model.

2. In Performance Monitor start a new trace.

3. Add counters for client processes.Client processes are listed under the Process object in

Performance Monitor.

a. For Management Studio, select ssms (not to be confused with smss).

b. For Excel, select excel.

c. For Power View in SharePoint, hosting is in one the SharePoint Service Application

AppPool processes (usually w3wp.exe).

Key Points
A tabular solution uses memory during processing, when loading metadata after a service restart, and

when loading remaining data on the first query issued against the model. Once a tabular database is

loaded, memory usage remains relatively stable unless SSAS needsto build temporary tables during

query execution.

18

Relative to processing and basic storage requirements, memory used for queries tends to be minimal. If

you’re monitoring a query workload in Performance Monitor, you’ll notice that memory usage is often

flat for many queries.

A query can result in a temporary but radical uptick in memory usage if a column or table needs to be

decompressed during query execution. Certain functions (such as EARLIEST, SUMX, and FILTER) are

known to have performance impact. Always test the queries and reports you plan to run in a production

environment to understand their performance profile.

When calculating memory usage on a development machine, any workspace databases loaded in

memory will skew your measurements. Be sure to unload the workspace database when collecting

metrics about memory usage.

Finally, remember to monitor memory used by client applications. A query might be trivial for the

Storage Engine, yet bring a client workstation to its knees if a massive amount of data is read into its

memory.

Memory Bandwidth and Speed

Moving from a disk-bound architecture to memory-bound architecture shifts performance bottlenecks

from disk access to memory access. Just like you needed fast disks for multidimensional models, you’ll

need fast memory to get the performance you want from of a tabular solution.

As of this writing, we’re still testing memory subsystem features to understand where the tradeoffs are.

Questions under investigation include identifying changes in query performance when adding more

integrated memory controllers versus adding more RAM. In a future update to this paper, we plan to

share our findings to these and other questions related to memory performance.

What we do know at this point is memory bandwidth becomes increasingly important as you add cores.

The more cores you have, the greater the number of threads requesting read operations from memory.

Many server workloads involve scanning large tables with little processing; having sufficientmemory

bandwidth lets more of those requests get through at one time.

Bus speed is also crucial. In a few isolated cases, high-end workstations that have a shorter (faster) bus

have been known to outperform business class servers.

In the next section, we’ll discuss the importance of onboard cache. However, regardless of how much

onboard cache you have, reading data from RAM is going to happen regularly. Systems that have high

performance memory and extra bandwidth are better equipped to deal with the technical challenges of

hosting an in-memory solution. As you evaluate different hardware systems, look for systems that offer

better than average memory performance and integrated memory controllers.

19

Key Points
Tabular solution architecturesare optimized for query performance, predicated on RAM storage being

much faster to read from than disk. When evaluating RAM, consider memory designs that balance

throughput and speed.

CPU

Selecting a fast CPU with a sufficient number of cores is also a top consideration. In a tabular solution,

CPU utilization is greatest when query evaluation is pushed to the Storage Engine. In contrast, CPU

bottlenecks are more likely to occur when a query or calculation is pushed to the single-threaded

Formula Engine. Because each query is single-threaded in the Formula Engine, on a multi-core system,

you might see one processor at maximum utilization while others remain idle.

Constructing queries that only run in the Storage Engine might sound tempting, but it’s unrealistic as a

design goal. If the point of your model is to provide insights that solve business problems, you’ll need to

provide queries and expressions that meet business goals, irrespective of query execution mechanics.

Furthermore, if you’re provisioning a server that hosts self-service BI solutions built and published by

other people, query syntax construction is probably beyond your control.

A CPU with clock speeds of at least 2.8 to 3 GHz is your best insurance against queries that execute

single-threaded in the Formula Engine, slow queries that are difficult optimize, or suboptimal query

syntax created by novice model designers.

Query Load on CPU

In some cases, queries against a tabular model can often be pushed down to the multi-threaded

xVelocity Storage Engine, where each query job runs on a separate core. Depending on the size of the

dataset and the query itself, you might see greater CPU utilization, which usually equates to better

performance.

Queries most likely to run in the Storage Engine are based on simple measures that can be calculated

without having to decompress the data first. If a column needs to be decompressed, such as when

computing a rank order of all values, a temporary table is created in memory to store and scan the

values. This operation consumes memory and CPU, especially if the calculation needs to be handled by

the Formula Engine.

Queries that run only in the Formula Engine, such as an evaluation of a SUMX or Filter operation, are

single-threaded and a common query performance bottleneck.FILTER iterates over the entire table to

determine which rows to return.

http://www.powerpivotblog.nl/tune-your-powerpivot-dax-query-dont-use-the-entire-table-in-a-filter-and-replace-sumx-if-possible

20

Effect of Concurrent Queries on CPU

The number of clients requesting data from the model will also factor heavily into how much CPU

resource you’ll need. As previously noted, each query moves through the Formula Engine as a single-

threaded operation. If you have 100 unique queries running simultaneously, you’ll want significantly

more cores to handle the load.

Processing Load on CPU

Processing can take a long time to complete, but is typically not considered to be CPU intensive. Each

processing job uses one to two cores; one core to read the data, and another core for encoding. Given

that each partition within one table must be processed sequentially, the pattern of a processing

operation tends to be a small number of cores sustained over a longer period of time. However, if

processing many tables in parallel, CPU usage can rise.

Cores
Now that you have a basic understanding of how CPU resources are used, let’s move on to specific CPU

designs most often used to support medium to large solutions.

For tabular solutions, the most frequently cited CPU designs range from 8 to 16 cores. Performance

appears to be better on systems that have fewer sockets. For example, 2 sockets with 8 fast cores, as

opposed to 4 sockets with 4 cores. Recall from the previous section the importance of memory

bandwidth and speed in data access. If each socket has its own memory controller, then in theory, we

should expect that using more cores per socket offers better performance than more sockets with fewer

cores.

Equally important, performance gains tend to level off when you exceed 16 cores. Performance doesn’t

degrade as you add more cores; it just fails to produce the same percentage increase that you achieved

previously. This behavior is not specific to tabular solutions; similar outcomes will be encountered when

deploying any memory intensive application on a large multi-core system.

The problem is that memory allocations fall behind relative to the threads making memory requests.

Contention arises as all cores to read and write to the same shared resource. Operations become

serialized, effectively slowing down server performance. The end result is that a CPU might be at 30-40%

utilization yet unable to perform any additional processing due to bottlenecks in the memory

subsystem. Cores are idled while waiting for memory allocations to catch up.For more information

about this behavior, see Detecting Memory Bandwidth Saturation in Threaded Applications.

Other considerations

When evaluating the number of cores, consider associated software costs and limits that increase with

the core count. In most cases, software licensing fees go up with the number of cores.

http://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications

21

Software licensing fees

Software licensing fees vary based on the number of cores used by SQL Server. As of this writing, the

use of more than 20 cores requires an Enterprise edition and a per-core or volume licensing option. See

Compute capacity limits by edition to determine the maximum number of cores supported by the SQL

Server edition you’re using.

Alternatively, you can use the Business Intelligence edition and Server CALs to license by the number of

people using the server. Check the Microsoft licensing web site for an explanation of BI edition licensing.

Be aware that running multiple SQL Server features on the same hardware is

known to slow system performance as the operating system and various

services compete for the same resources. Before installing multiple SQL Server

features on the same machine, take a look at a server memory calculator that

SQL CSS created. It can give you an idea of how well your machine supports the

relational engine and operating system. The calculator does not account for

Analysis Services, but if you are installing multiple SQL Server feature

components, you’ll at least understand how to configure the system to provide

adequate RAM for the relational engine and operating system.

Virtual machine limits and licenses

Be aware that using virtual machines will impose new limits on the number of logical cores you can use.

In Hyper-V on Windows Server 2012, maximum RAM is 2 TB and maximum virtual cores is 64. Earlier

versions of Windows bring that maximum down to 4 cores. For more information, see maximum virtual

processor information for Windows Server 2012 and earlier versions. Other virtualization vendors

operate under similar constraints; if you are using a different VM technology check the product web site

for maximum limits.

Onboard Cache (L1, L2)
Because onboard cache is so much faster than RAM, systems that offer proportionally more L1 and L2

cache are better for a tabular data access.

In SQL Server 2012 SP1, Analysis Services added cache optimizations to speed up performance. To use

the onboard cache to its best advantage, data structures providing query results were resized smaller to

more easily fit the size constraints of onboard cache. In particular, having a large L2 cache, which is

typically shared by all cores on the same socket, has proven to be especially helpful in boosting query

performance for a tabular solutions.

The L2 cache is valuable during table scans (i.e., when caches are missed) because the iteration over

memory completes sooner when data is found in L2 cache. As the operating system accesses the first

http://msdn.microsoft.com/en-us/library/ms143760.aspx
http://www.microsoft.com/licensing/about-licensing/sql2012.aspx#tab=3
http://blogs.msdn.com/b/sqlsakthi/archive/2012/05/19/cool-now-we-have-a-calculator-for-finding-out-a-max-server-memory-value.aspx
http://blogs.msdn.com/b/sqlsakthi/archive/2012/05/19/cool-now-we-have-a-calculator-for-finding-out-a-max-server-memory-value.aspx
http://technet.microsoft.com/en-us/library/hh833682(d=lightweight,v=ws.11)
http://technet.microsoft.com/en-us/library/cc794868(v=WS.10).aspx

22

few bytes of a block of data, it can fetch extra bytes into the L2 cache, and as the scan proceeds to bytes

further in the block, it will hit them in the L2 cache rather than RAM. Also, queries can benefit from the

L2 cache when doing lookups of common dictionary values and relationships.

If you are familiar with how Analysis Services manages caching for

multidimensional solutions, caching behavior for a tabular solutions is

considerably different. Tabular solutions use two types of cache: a Storage

Engine cache, and a cell level cache created by MDX queries. Cell-level caching

is done by the Formula Engine. It’s the same caching used for multidimensional

solutions.

Storage Engine caches are created during query execution. The Formula Engine

will sometimes fire one or more Storage Engine queries, which are then cached

by the Storage Engine. If a client executes the same query multiple times, query

results are returned from the cache, eliminating the Storage Engine portion of

query execution. By default, server configuration properties specify 512

Storage Engine cache slots. You can change this setting in the msmdsrv.ini file

if you get too many cache misses.

In terms of hardware caching, the operating system fully controls which data

structures are stored in onboard cache or RAM, with no intervention from

Analysis Services. In terms of solution architecture, what this means to you is

that there is no specific action or server reconfiguration on your part that can

change hardware caching behavior. Data structures will either be placed in

onboard cache or in RAM, depending on resource availability and competition

from other applications using the same resources.

Tip: You can download CPU-Z utility from CPUID.com to determine L1, L2, and L3 cache on your

computer.

NUMA
Unlike its multidimensional (MOLAP) counterpart, a tabular solution is not NUMA aware. Neither the

Formula Engine nor the Storage Engine will modify execution when running on NUMA machines.

This means that if you have a NUMA machine, you might run into worse performance than if you used a

non-NUMA machine with the same number of cores. Typically, this only happens on systems having

more than 4 NUMA nodes.

Performance degradation occurs when memory access has to traverse NUMA nodes (i.e., a thread or

instruction executing on one node needs something that is executing on another node). When choosing

between systems that have the same number of cores and RAM, pick a non-NUMA system if you can.

http://www.cpuid.com/softwares/cpu-z.html

23

To offset performance degradation, consider setting processor affinity on Hyper-V VMs, and then

installing Analysis Services tabular instances on each VM. For more information about this technique,

see Using Tabular Models in a Large-scale Commercial Solution and Forcing NUMA Node affinity for

Analysis Services Tabular databases.

Monitor CPU Usage
Using Task Manager, you can get an overall sense of CPU utilization during processing and query

operations. While Task Manager might not be the best tool to use for performance tuning, it should be

adequate for assessing the CPU requirements of your tabular solution. With Task Manager started, run a

representative sample of processing and query workloads to see how the system performs.

For example, the following screenshot shows CPU usage while executing a Process Full on

ContosoRetailDW. Tables are mostly processed in sequence, and as you can see, overall CPU usage is

relatively modest.

http://msdn.microsoft.com/en-us/library/dn751533.aspx
http://blogs.msdn.com/b/sqlcat/archive/2013/11/05/forcing-numa-node-affinity-for-analysis-services-tabular-databases.aspx
http://blogs.msdn.com/b/sqlcat/archive/2013/11/05/forcing-numa-node-affinity-for-analysis-services-tabular-databases.aspx
http://blogs.msdn.com/b/sqlcat/archive/2013/11/05/forcing-numa-node-affinity-for-analysis-services-tabular-databases.aspx

24

CPU usage during query execution

Queries that are pushed to the Storage Engine complete much sooner than those that spend additional

cycles in the Formula Engine. You can identify which queries are pushed to the Storage Engine by using

SQL Server Profiler. When setting up a new trace, click Show all events. Events you will want to select

appear under Query Processing: VertiPaq SE Query Begin, VertiPaq SE Query Cache Match, VertiPaq SE

Query End.

When you run the trace, you can monitor query execution to determine query duration and execution.

Queries pushed to the Storage Engine are indicated through the event name. A line has VertiPaq in the

name tells you that part of the expression has been pushed down to xVelocity Storage Engine.

As you monitor query execution to understand hardware requirements, take the time to identify any

queries that could benefit from optimization. Queries that take longer than expected will not only

frustrate users, it will artificially and unnecessarily raise the level of system resources required by your

solution.

25

Although DAX query optimization and DAX query plan analysis is beyond the scope of this guide, there

are links at the end of this document that provide more information.

Key Points
CPU resources are heavily used for queries and some calculations. Simple mathematical computations

based on a single column (for example, summing or averaging a numeric column) are pushed to the

Storage Engine and executed as a multi-threaded operation on multiple cores. In contrast, a calculation

that ranks or sorts values requires the single-threaded Formula Engine, using just one core and possibly

lots of memory depending on the size of the temporary table.

Incremental performance gains tend to level off after 16 logical cores. Although a greater number of

cores (32 or 64) will definitely increase capacity, you won’t see the same gain in performance increase

when going beyond 16 cores.

As SSAS Tabular is not NUMA aware, avoid NUMA unless you need it for other applications that run on

the same hardware. There will be longer wait times if a request has to traverse NUMA nodes during a

read operation.

Finally, when you’ve narrowed your server selection to a few choices, take a look at the onboard cache

and choose the system that offers the larger onboard cache. Query cache optimizations in the tabular

engine target the L1 and L2 cache. You gain the most benefit from those optimizations on a system that

offers more onboard cache.

Disk I/O

Disk I/O, which normally looms large in any hardware sizing exercise, is less of a concern in tabular

solution hardware sizing because given sufficient RAM, tabular solutions are not reading or writing to

disk during query execution. Solid performance of table scans, aggregations, and most calculations are

predicated on having an ample supply of RAM. If the operating system has to page memory to disk,

performance degrades dramatically.

On a properly provisioned server, disk IO occurs infrequently, but at predictable intervals. You’ll always

see disk I/O activity during processing when reading from a relational database (in comparison, saving

the tabular database files to disk is relatively quick). You will also see some I/O after system restart

when metadata and data dictionaries are loaded into memory. Data dictionaries are loaded sequentially

so this step can take some time if you have a large solution or lots of smaller solutions. You will see I/O

activity again when the rest of the data is loaded, typically when the first query is executed. For query

workloads, the ideal system should have sufficient memory so that paging to disk does not occur at all.

Although disk I/O is not a hardware investment to maximize, don’t discount it entirely. A system that

loads many gigabytes of data from disk to memory will perform better if the disk is fast.

26

NOTE: Paging to disk will only occur if you set the VertiPaqPagingPolicy to 1. The default setting is 0,

which disallows paging to disk. For more details, Memory Settings in Tabular Instances of Analysis

Services.

Hardware Configuration Examples

This section provides a few starter examples of hardware configurations of existing deployments, along

with additional notes about the production environment. Over time, we plan to update this table with

more examples that demonstrate the breadth of deployment that include in-memory databases.

Deployments described in the following table range from dedicated servers to multi-tenant servers

using VM technology running on newer and older hardware. For each deployment, solution architects

reported above average performance on the hardware used to run the model.

Model Size System Information RAM Other Details

40 GB Dell PowerEdge R810,
dual 8-core CPU

256 GB Server runs other SQL Server features as
well, including the relational engine and
Analysis Services in multidimensional
mode.

Processing for the tabular solution runs on
the same server. ProcessFull on a weekly
basis, and ProcessUpdate nightly.

40 GB Hewlett-Packard
ProLiant DL580 (2)

1 TB Multi-tenant architecture supporting at
least 4 virtual machines will run on the
two systems, hosting Analysis Services in
tabular mode, Analysis Services in
multidimensional mode, SharePoint with
Reporting Services Power View, and a SQL
Server relational database engine.

Decisions about how to allocate memory
across all VMs are still pending.

Solution design consists of several smaller
tabular models, about 10 total, consuming
around 40 GB of memory all together.

4 GB Hewlett-Packard
ProLiant BL460 G7
Processor: 2 x Intel
X5675 3.07 GHz

96 GB System is purposely oversized to
accommodate expected growth in the
data warehouse.

6 GB Commodity blade
servers

16 GB Using VMs to host multiple smaller
solutions. VMs are currently configured to
use 16 GB, which can be increased if

http://www.sqlbi.com/articles/memory-settings-in-tabular-instances-of-analysis-services/
http://www.sqlbi.com/articles/memory-settings-in-tabular-instances-of-analysis-services/
http://www.sqlbi.com/articles/memory-settings-in-tabular-instances-of-analysis-services/

27

memory-related errors occur.

Anecdotally, we know that tabular models sometimes perform better on faster, newer processors than

on high-end server hardware. Workstations that offer more in terms of raw processor performance are

often first to market. When evaluating hardware, broaden your search to include workstations that you

might not otherwise consider. See this case study to read about one solution that uses high-end

workstations for tabular workloads.

Conclusion
In this guide, we reviewed a methodology for estimating memory requirements for a database at steady

state, under processing workloads, and under query workloads. We also covered hardware

configurations and tradeoffs to get the best price to performance ratio.

In simplest terms, when budgeting hardware for a tabular database, you should maximize these system

resources.

 As much RAM as you can afford

 Fast CPU with multiple cores on the fewest number of sockets

 Onboard cache (L2)

Although the trend is to maximize the number of cores, on a tabular server, hardware investment

should favor query performance and table scans. Investing in onboard memory, memory speed, and

memory bandwidth often yield a better return on investment than upping the number of cores. Also,

recall that licensing fees go up as you increase the number of cores.

Memory prices have come down in recent years, but it’s still a significant cost, especially at levels you’ll

be considering for in-memory storage technologies. Systems that offer 64, 128, 256 gigabytes will have

other features like onboard memory controllers that can offset the benefits of just adding more

memory. You might find that 64 GB with a second memory controller is a better solution that 128 GB

with one memory controller.

A few final points to keep in mind:

 If you purchase a high-end machine, you can get immediate use out of excess RAM by

distributing available memory across multiple VMs dedicated to different applications and

workloads, and then reconfigure memory and cores as capacity requirements increase.

 Remember that compression and query performance are variable, depending on data

cardinality, data density, and the types of queries that run on the server. Two different models

that both measure 120 GB in size will use resources differently depending on the types of

queries submitted to each one. You will need to approach each solution as a unique project and

do thorough testing to determine the hardware requirements for each one.

http://msdn.microsoft.com/en-us/library/dn751533.aspx

28

 Continuous monitoring is essential to anticipating future capacity needs. Pay close attention

tomemory usage over time, especially if subsequent processing is resulting in larger and larger

models, to ensure that query performance stays robust.

For more information:

Tabular Model Solution Deployment

Process Database, Table or Partition

Tabular Model Partitions

Memory Usage

Detecting Memory Bandwidth Saturation in Threaded Applications

About the relativity of large data volumes

VertiPaq vs. Column Store

What is using all that memory on my Analysis Services instance?

Investigating on xVelocity (VertiPaq) column size

Optimizing High Cardinality Columns in VertiPaq

http://en.wikipedia.org/wiki/Memory_bandwidth

Memory Settings in Tabular Instances of Analysis Services

Memory Properties (Books Online)

Memory Considerations about PowerPivot for Excel

How much data can I load into PowerPivot?

Create a memory-efficient Data Model using Excel 2013 and the PowerPivot add-in

http://blogs.msdn.com/b/sqlsakthi/archive/2012/05/19/cool-now-we-have-a-calculator-for-finding-out-

a-max-server-memory-value.aspx

http://blogs.msdn.com/b/sqlsakthi/p/max-server-memory-calculator.aspx

Load Testing

(video) Optimizing Your BI Semantic Model for Performance and Scale

(video) Load Testing Analysis Services

http://msdn.microsoft.com/en-us/library/gg492138.aspx
http://msdn.microsoft.com/en-us/library/hh758414.aspx
http://msdn.microsoft.com/en-us/library/hh230803.aspx
http://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications
http://blogs.msdn.com/b/analysisservices/archive/2011/07/26/about-the-relativity-of-large-data-volumes.aspx
http://www.sqlbi.com/wp-content/uploads/Vertipaq-vs-ColumnStore1.pdf
http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance
http://sqlblog.com/blogs/marco_russo/archive/2012/03/19/investigating-on-xvelocity-vertipaq-column-size.aspx
http://www.sqlbi.com/articles/optimizing-high-cardinality-columns-in-vertipaq/
http://en.wikipedia.org/wiki/Memory_bandwidth
http://www.sqlbi.com/articles/memory-settings-in-tabular-instances-of-analysis-services/
http://msdn.microsoft.com/en-us/library/ms174514.aspx
http://sqlblog.com/blogs/marco_russo/archive/2010/01/26/memory-considerations-about-powerpivot-for-excel.aspx
http://powerpivotgeek.com/2010/08/22/how-much-data-can-i-load-into-powerpivot/
http://office.microsoft.com/en-us/excel-help/create-a-memory-efficient-data-model-using-excel-2013-and-the-powerpivot-add-in-HA103981538.aspx
http://blogs.msdn.com/b/sqlsakthi/archive/2012/05/19/cool-now-we-have-a-calculator-for-finding-out-a-max-server-memory-value.aspx
http://blogs.msdn.com/b/sqlsakthi/archive/2012/05/19/cool-now-we-have-a-calculator-for-finding-out-a-max-server-memory-value.aspx
http://blogs.msdn.com/b/sqlsakthi/p/max-server-memory-calculator.aspx
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2012/DBI414
http://sqlbits.com/Sessions/Event10/Load_Testing_Analysis_Services

29

Can your BI solution scale?

http://www.tomshardware.com/reviews/ram-speed-tests,1807-2.html

DAX Optimizations

http://mdxdax.blogspot.com/2011/12/dax-query-plan-part-1-introduction.html

http://mdxdax.blogspot.com/2012/01/dax-query-plan-part-2-operator.html

http://mdxdax.blogspot.com/2012/03/dax-query-plan-part-3-vertipaq.html

http://www.powerpivotblog.nl/tune-your-powerpivot-dax-query-dont-use-the-entire-table-in-a-filter-

and-replace-sumx-if-possible

http://sqlblog.com/blogs/marco_russo/archive/2011/02/07/powerpivot-filter-condition-

optimizations.aspx

http://www.sqlbi.com/articles/optimize-many-to-many-calculation-in-dax-with-summarize-and-cross-

table-filtering/

http://sqlblog.com/blogs/marco_russo/archive/2012/09/04/optimize-summarize-with-addcolumns-in-

dax-ssas-tabular-dax-powerpivot.aspx

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

 Are you rating it high due to having good examples, excellent screen shots, clear writing,

or another reason?

 Are you rating it low due to poor examples, fuzzy screen shots, or unclear writing?

This feedback will help us improve the quality of white papers we release.

Send feedback.

http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI330
http://www.tomshardware.com/reviews/ram-speed-tests,1807-2.html
http://mdxdax.blogspot.com/2011/12/dax-query-plan-part-1-introduction.html
http://mdxdax.blogspot.com/2012/01/dax-query-plan-part-2-operator.html
http://mdxdax.blogspot.com/2012/03/dax-query-plan-part-3-vertipaq.html
http://www.powerpivotblog.nl/tune-your-powerpivot-dax-query-dont-use-the-entire-table-in-a-filter-and-replace-sumx-if-possible
http://www.powerpivotblog.nl/tune-your-powerpivot-dax-query-dont-use-the-entire-table-in-a-filter-and-replace-sumx-if-possible
http://sqlblog.com/blogs/marco_russo/archive/2011/02/07/powerpivot-filter-condition-optimizations.aspx
http://sqlblog.com/blogs/marco_russo/archive/2011/02/07/powerpivot-filter-condition-optimizations.aspx
http://www.sqlbi.com/articles/optimize-many-to-many-calculation-in-dax-with-summarize-and-cross-table-filtering/
http://www.sqlbi.com/articles/optimize-many-to-many-calculation-in-dax-with-summarize-and-cross-table-filtering/
http://sqlblog.com/blogs/marco_russo/archive/2012/09/04/optimize-summarize-with-addcolumns-in-dax-ssas-tabular-dax-powerpivot.aspx
http://sqlblog.com/blogs/marco_russo/archive/2012/09/04/optimize-summarize-with-addcolumns-in-dax-ssas-tabular-dax-powerpivot.aspx
mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20Hardware%20Sizing%20of%20Tabular%20Solutions

